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The magnetic susceptibility (x) of 1,6,10,15,19,25,28,32-
octa-n-butoxynaphthalocyaninatomanganese(III) tetra-
cyanoethanide can be ®t to a Curie±Weiss expression
with h~54 K for Tw150 K, and the xT(T) data are con-
sistent with linear chains and can be ®t to a Seiden
expression for alternating S~2 and S~1/2 anti-
ferromagnetically coupled spin sites with a coupling
constant, Jintra/kB (H~22JSa?Sb) of 2145 K. Hysteresis
with a coercive ®eld of 1.6 kOe was observed at 2 K. The
magnetic ordering temperature, Tc, determined from
both the maximum in the 10 Hz ac susceptibility, x'(T),
and the irreversibility of low ®eld zero ®eld cooled/
®eld cooled magnetization data, was determined to be
9.0 K. This is the ®rst example of a
metallophthalocyanine electron transfer salt that
magnetically orders.

The preparation and characterization of molecule-based
magnets is a growing area of contemporary interdisciplinary
research.1,2 Several families of TCNE-based (TCNE~tetra-
cyanoethylene) materials exhibit magnetic ordering. The ®rst
organic magnet characterized was the electron transfer salt
[FeCp2*]?z[TCNE]?2 (Cp*~pentamethylcyclopentadienide)
with an ordering temperature, Tc, of 4.8 K.3 This work led
to the discovery of the ®rst room-temperature organic magnet,
the amorphous V(TCNE)x?y(solvent) with Tc#400 K.4 More
recently, magnets based on metallomacrocycles and [TCNE]?2

exempli®ed by [MnTPP][TCNE]?2PhMe (H2TPP~meso-tetra-
phenylporphyrin) (Tc~14 K)5 have been the focus of intensive
research.6

Primarily due to their low solubility, phthalocyanine-based
magnets have not been extensively studied, with the majority of
work in this area limited to highly doped poorly characterized
metallophthalocyanines.7 An exception is [MnPc][TCNE]
(H2Pc~phthalocyanine), which exhibits ferromagnetic cou-
pling, but not magnetic ordering.8 Recent advances in soluble

phthalocyanines have enabled their use in many aspects of solid
state chemistry including metal-like conductors,9 liquid crys-
tals10 and Langmuir±Blodgett (LB) ®lms.11 Recently, we have
focused on substituted phthalocyanines as a means of
increasing the solubility of phthalocyanines and subsequently
isolating the resulting electron-transfer salts with TCNE with
1-D structures. Herein, we describe the synthesis and
characterization of 1,6,10,15,19,25,28,32-octa-n-butoxy-
naphthalocyaninatomanganese(II), MnIINc(OBu)8 1, and
1z[TCNE]?2; the ®rst example of a phthalocyanine electron
transfer salt exhibiting magnetic ordering.

Formation of 1[OAc] was achieved by direct metal insertion
into dilithiumphthalocyanine,12 Li2Nc(OBun)8, or by metalla-
tion of H2Nc(OBun)8 with Mn(OAc)2?4H2O in DMF.13

Reactions of 1[OAc] with the strong acid H2TCNE
(pKa~3.6) in the presence of TCNE14,15 to form acetic acid
and 1[TCNE] were unsuccessful as impurities contaminated the
product.

1 was prepared by the reduction of 1[OAc] with sodium
borohydride in a methanol/pyridine mixture using standard
Schlenck techniques.16 The solvent was removed and the
product extracted from the crude reaction mixture and
subsequently recrystallized from a mixture of dichloromethane
and hexanes. UV/visible absorption spectroscopy of these
products con®rmed the presence of both the desired MnII

product and its m-oxo MnIII dimer as an impurity.17

Additionally, a second method was utilized that is a
modi®cation from a recently published synthesis by Ricciardi
et al.18 by metallation of free-base phthalocyanine in propanol
with MnII(OAc)2?4H2O under an inert atmosphere. The
corresponding dipyridine complex of 1 can be isolated from
the reaction mixture without further puri®cation. Purity was
con®rmed by UV/Vis spectroscopy, which showed no evidence
of [MnIIINc(OBun)8]z or H2Nc(OBun)8 in the spectrum.

MnIINc(OBu)8 1 is an electron-rich MnII complex prone to
oxidation in non-coordinating solvents such as toluene,
chlorobenzene and dichloromethane.19 In coordinating sol-
vents such as acetonitrile, tetrahydrofuran and pyridine, the
blue-green color of the MnII persists only for minutes in the
absence of oxygen. Unlike unsubstituted MnIINc, 1 reacts with
trace oxygen in highly coordinating solvents to from the m-oxo
dimer as evidenced by the 938 nm peak in the UV/vis
spectrum.20 This enhanced reactivity is attributed to electron-
donation from the alkoxy substituents into the phthalocyanine
macrocycle making the MnII electron-rich and prone to
oxidation.

The Q-band absorption of phthalocyanines arises from the
p±p* transition of the phthalocyanine macrocycle and is
particularly sensitive to slight changes in its electronic
structure,19 and occurs at 938 nm for 1z which is signi®cantly
red-shifted when compared to unsubstituted [MnIIIPc]z

(718 nm).21 The Q-band absorption of 1 in pyridine is observed
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at 941 nm, similarly red shifted with respect to unsubstituted
MnIIPc (667 nm) in pyridine.

1 shows one metal-based [Mn(III) to Mn(II)] reduction wave
at 20.33 V, and two ring-based oxidation waves centered at
0.29 and 0.60 V (vs. SCE) respectively, Fig. 1. Similar ring-
based oxidation values were observed for 2,3-(C8H17O)8

PcFeII[ButNC]2 (0.38 V) and 1,4-(C8H17O)8PcFeII[ButNC]2
(0.22 V).9

Reaction of 1 with TCNE leads to black [MnIIINc-
1,6(OBu)8]z[TCNE]?2, 1z[TCNE]?2.22 The infrared spectrum
of 1[TCNE] is consistent with the presence of [TCNE]?2 as
indicated by the shift in the n(CN) from 2259m and 2221s cm21

for neutral TCNE to 2188m and 2130s cm21 consistent with s-
trans-m-N-bound [TCNE]?2 as observed for 1-D chain
structures of this type.23 Variable temperature IR studies of
1[TCNE] do not show spectral changes suggesting no phase
transition between 20 and 180 ³C. Thermogravimetric analysis,
TGA, coupled with quadrupole mass spectroscopy of 1[TCNE]
over the range 40 to 500 ³C shows no evidence of solvent loss.24

The temperature dependence (2 to 300 K) of the magnetic
susceptibility, x, for 1[TCNE] can be ®t to a Curie±Weiss
expression, x31/(T2h), with h~54 K25 (150vTv300 K),
Fig. 2. This value is lower then that observed for a-
[MnPc][TCNE] (73 K) or for [MnTPP][TCNE] (61 K).5 The
observed room temperature effective moment, meff~(xT )1/2, of
1[TCNE], is 5.27 mB, near the expected value of 5.20 mB for
isotropic independent g~2, S~2, and S~1/2 radicals. At
lower temperatures the moment 1z[TCNE]?2 increases due to
the correlation of uncompensated moments, reaching a
maximum of 13.4 mB at 15.5 K.

The 1-D ferrimagnetic nature of 1[TCNE] is also evident in
the xT(T ) data, which can be modeled by the Seiden
expression26 for isolated chains of antiferromagnetically S~2
and S~1/2 spin sites with a Jintra/kB of 2145 K (2100 cm21,
2201 cal) (H~22JintraSa?Sb), Fig. 2. The sign and magnitude
of Jintra suggests strong intrachain antiferromagnetic coupling.
The data ®t remarkably well above 16 K; however, below 16 K
the prediction exceeds the data suggesting antiferromagnetic
interactions between chains begin to dominate.27 Further, the
goodness-of-®t of the Seiden expression suggests 1z[TCNE]?2

consists of isolated chains with minimal interchain interactions.
This is probably due to the large size of the substituted
naphthalocyanine macrocycle effectively pushing chains
apart while minimizing interdigitation as observed for
[MnPc][TCNE].8 As a consequence of ferrimagnetic coupling
within the chain, xT(T ) is predicted to exhibit a minimum at
#450 K, which cannot be veri®ed.

Magnetic ordering was observed from the peaks in

temperature dependences of the ac susceptibility and the zero
®eld cooled/®eld cooled (ZFC/FC) magnetization data, as well
as observation of hysteresis. A peak in the absorptive, x'(T ),
component of the low frequency (10 Hz) ac susceptibility,
frequently used to de®ne the ordering temperature in this class
of materials, was observed at 9.0 K, Fig. 3. Both x'(T ) and
x@(T ) are frequency, v, dependent indicative of spin-glass
behavior, and/or disorder/frustration of the spin lattice. The
amount of disorder can be parameterized by w [w~(DTf/
TfDlog(v)],28 which for 1z[TCNE]?2 is 0.19 indicating a highly
disordered material.27 The ordering temperature for a spin
glass is commonly referred to as the freezing temperature, Tf,
and may be determined independently by the divergence of the
ZFC/FC studies at low ®elds. The position of this divergence in
the ZFC/FC or bifurcation temperatures, Tb, for 1[TCNE] at
0.1, 1.0 and 10.0 Oe was found to be 6.2, 7.1, and 9.0 K
respectively, Fig. 4. The ®eld dependence of bifurcation is
consistent with a highly disordered spin glass material in good
agreement with the large value of w (0.19).28 Although the
origin of the observed magnetic disorder is not fully under-
stood, it is probably a consequence of structural disorder.

The ®eld dependence of the magnetization at 2 K, M(H), for
1z[TCNE]?2 displays metamagnet-like behavior. At 2 K a
slow rise in magnetization with increasing ®eld, H, is observed
until a critical ®eld, Hc, of 24.0 kOe is reached which is
followed by a rapid increase to 18 600 emu Oe mol21 at
5 T. This value is substantially lower than the expectation
for ferromagnetically coupling, i.e., STot~2z1/2~5/2, of
27 925 emu Oe mol21, and higher than the expectation for

Fig. 1 Typical cyclic voltammogram of MnNc(OBun)8py, 1py, in a
dichloromethane solution containing 0.1 M [Bun

4N][PF6] as a support-
ing electrolyte at a scan rate of 100 mV s21.

Fig. 2 Reciprocal molar magnetic susceptibility, x21 (©), and moment,
meff (+), as a function of temperature for 1[TCNE]. Line represents a ®t
to the predications for alternating quantum/classical spin ferrimagnetic
chains (see text).

Fig. 3 Absorptive, x', and dispersive, x@, ac susceptibility as a function
of temperature taken at 10 (#, $), 100 (%, &), and 1000 (1, r) Hz at
zero applied dc ®eld (v0.5 Oe) and 1 Oe applied ac ®eld for 1[TCNE].

242 J. Mater. Chem., 2000, 10, 241±244



antiferromagnetically coupled, i.e., STot~221/2~3/2, of
16 755 emu Oe mol21. Similar behavior was observed
for [MnTClPP][TCNE]?2CH2Cl2 (H2TClPP~meso-tetrakis(4-
chlorophenyl)porphyrin)25 and a-[FeCp*2][TCNQ]29 (TCNQ
~7,7,8,8-tetracyano-p-quinodimethane) which also display
metamagnetic behavior. Hysteresis was observed for
1z[TCNE]?2 with a coercive ®eld, Hcr, of 16.8 kOe at 2 K.

The 1z[TCNE]?2 complex exhibits a h value of 54 K
indicative of strong magnetic coupling. Due to the large size of
the naphthalocyanine, macrocycle interchain distances are
expected to be large, thus each chain behaves more like
idealized 1-D systems. Consequently, the magnetic data ®t
remarkable well to a Seiden model above 16 K. At low
temperature, 3-D ordering was observed below 9 K. The origin
of 3-D ordering and factors controlling 1-D chain formation
are presently under investigation.
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